Hive分析窗口函数(五) GROUPING SETS,GROUPING__ID,CUBE,ROLLUP

Hive版本为 apache-hive-0.13.1

这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。

数据准备:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
CREATE EXTERNAL TABLE lxw1234 (
month string,
day string,
cookieid string
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
stored as textfile location '/tmp/lxw11/';

hive> select * from lxw1234;
OK
2015-03 2015-03-10 cookie1
2015-03 2015-03-10 cookie5
2015-03 2015-03-12 cookie7
2015-04 2015-04-12 cookie3
2015-04 2015-04-13 cookie2
2015-04 2015-04-13 cookie4
2015-04 2015-04-16 cookie4
2015-03 2015-03-10 cookie2
2015-03 2015-03-10 cookie3
2015-04 2015-04-12 cookie5
2015-04 2015-04-13 cookie6
2015-04 2015-04-15 cookie3
2015-04 2015-04-15 cookie2
2015-04 2015-04-16 cookie1

GROUPING SETS,在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


SELECT
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM lxw1234
GROUP BY month,day
GROUPING SETS (month,day)
ORDER BY GROUPING__ID;

month day uv GROUPING__ID
------------------------------------------------
2015-03 NULL 5 1
2015-04 NULL 6 1
NULL 2015-03-10 4 2
NULL 2015-03-12 1 2
NULL 2015-04-12 2 2
NULL 2015-04-13 3 2
NULL 2015-04-15 2 2
NULL 2015-04-16 2 2


--等价于
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day

再如:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM lxw1234
GROUP BY month,day
GROUPING SETS (month,day,(month,day))
ORDER BY GROUPING__ID;

month day uv GROUPING__ID
------------------------------------------------
2015-03 NULL 5 1
2015-04 NULL 6 1
NULL 2015-03-10 4 2
NULL 2015-03-12 1 2
NULL 2015-04-12 2 2
NULL 2015-04-13 3 2
NULL 2015-04-15 2 2
NULL 2015-04-16 2 2
2015-03 2015-03-10 4 3
2015-03 2015-03-12 1 3
2015-04 2015-04-12 2 3
2015-04 2015-04-13 3 3
2015-04 2015-04-15 2 3
2015-04 2015-04-16 2 3

-- 等价于
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day
其中的 GROUPING__ID,表示结果属于哪一个分组集合。

CUBE,根据GROUP BY的维度的所有组合进行聚合。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM lxw1234
GROUP BY month,day
WITH CUBE
ORDER BY GROUPING__ID;

month day uv GROUPING__ID
--------------------------------------------
NULL NULL 7 0
2015-03 NULL 5 1
2015-04 NULL 6 1
NULL 2015-04-12 2 2
NULL 2015-04-13 3 2
NULL 2015-04-15 2 2
NULL 2015-04-16 2 2
NULL 2015-03-10 4 2
NULL 2015-03-12 1 2
2015-03 2015-03-10 4 3
2015-03 2015-03-12 1 3
2015-04 2015-04-16 2 3
2015-04 2015-04-12 2 3
2015-04 2015-04-13 3 3
2015-04 2015-04-15 2 3

-- 等价于
SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM lxw1234
UNION ALL
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day
```

ROLLUP,是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。

比如,以month维度进行层级聚合:
```sql
SELECT
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM lxw1234
GROUP BY month,day
WITH ROLLUP
ORDER BY GROUPING__ID;

month day uv GROUPING__ID
---------------------------------------------------
NULL NULL 7 0
2015-03 NULL 5 1
2015-04 NULL 6 1
2015-03 2015-03-10 4 3
2015-03 2015-03-12 1 3
2015-04 2015-04-12 2 3
2015-04 2015-04-13 3 3
2015-04 2015-04-15 2 3
2015-04 2015-04-16 2 3

可以实现这样的上钻过程:月天的UV->月的UV->总UV
–把month和day调换顺序,则以day维度进行层级聚合:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
SELECT 
day,
month,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM lxw1234
GROUP BY day,month
WITH ROLLUP
ORDER BY GROUPING__ID;

day month uv GROUPING__ID
-------------------------------------------------------
NULL NULL 7 0
2015-04-13 NULL 3 1
2015-03-12 NULL 1 1
2015-04-15 NULL 2 1
2015-03-10 NULL 4 1
2015-04-16 NULL 2 1
2015-04-12 NULL 2 1
2015-04-12 2015-04 2 3
2015-03-10 2015-03 4 3
2015-03-12 2015-03 1 3
2015-04-13 2015-04 3 3
2015-04-15 2015-04 2 3
2015-04-16 2015-04 2 3

可以实现这样的上钻过程:
天月的UV->天的UV->总UV(这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)